Paradigma de programación en JavaScript

JavaScript programming paradigm

What is a programming paradigm?

The model or map of how we see the real world, that is a paradigm, it is a way of seeing and doing things. Following this logic, a programming paradigm is nothing more than a way of viewing and creating programming code.

Paradigms are powerful because they create the glasses or lenses through which we see the world.

Stephen R. Covey

There are three main programming paradigms used today and in JavaScript they have always existed since its first version.

  • Structured programming paradigm
  • Object-oriented
  • Functional

Now, if we stick to the phrase of Stephen R. Covey, that paradigms create the lenses through which we see the world. Let's imagine that the three previous paradigms, each, are a pair of glasses that we put on when programming and that we can change those glasses according to our visual needs (for programming or problem solving).

Structured programming paradigm

Origin

In 1954 the FORTRAN programming language appeared, then in 1958 ALGOL and in 1959 COBOL. Time after Edsger Wybe Dijkstra in 1968 discover the structured programming paradigm, we say “discover” because they didn't actually invent it. Although this programming paradigm was formalized some time after the appearance of these programming languages, it was possible to do structured programming in them.

Dijkstra He recognized that programming was difficult, and programmers don't do it very well, which I totally agree with. A program of any complexity has many details for the human brain. In fact, the Neuroscience tells us that the focused mind It can only work with four pieces of data at a time, at most. For this reason, if one small detail is neglected, we create programs that seem to work well, but fail in ways you never imagine.

Evidence

Dijkstra's solution was to use tests, only these tests used a lot of mathematics, which was quite difficult to implement. During his research he found that certain uses of GOTO made it difficult to decompose a large program into smaller pieces, it could not be applied “divide and conquer”, necessary to create reasonable evidence.

Sequence, selection and iteration

Patrones de la programación estructurada
Patterns of structured programming

Böhm and Jacopini They proved two years earlier that all programs can be built by just three structures: sequence, selection and iteration. Dijkstra already knew these three structures and discovered that these are the ones necessary to make any part of the program tested. This is where the structured programming paradigm is formalized.

Edsger tells us that it is bad practice to use GOTO and suggests better using the following control structures:

  • If, then, else (selection)
  • do, while, until (iteration or repetition)

Decomposition of small units easy to test

Nowadays most programming languages use structured programming, JavaScript uses this type of programming. The simplest example is if conditions.

const EDAD_MINIMA = 18;
if (edad >= EDAD_MINIMA) {
	// hacer algo porque es mayor que 18
} else {
	// Hacer otra cosa en caso contraio
}

And if we isolate it in a function, we have a decomposition of functionalities or units that can be tested more easily. In the next section we will see the importance of having a completely probable unit

const EDAD_MINIMA = 18;
functions esMayorEdad(edad) {
  if (edad >= EDAD_MINIMA) {
     return true;
  } else {
     return false;
  }
}

With this condition we have direct control of what can happen if the age is greater than or equal to 18, and also in the event that the age is younger.

Let's not be so strict either, surely the GOTO ruling has its merits and perhaps it was very efficient in some cases, but I think that to avoid misuses that probably caused disasters, Dijkstra recommended to stop using GOTO.

Test, divide and conquer

Structured programming allows us to apply the “divide and conquer” philosophy, because we allows you to create small unit tests, until the entire program is covered. The mathematical solution of Wybe Dijkstra It was never built, precisely because of its difficulty in implementation. And unfortunately today there are still programmers who do not believe that formal tests are useful for create high quality software.

And I say create, because verify correct operation after create, is nothing more than a simple measurement and the opportunity to reduce time and money is lost.

Scientific method, experiments and impiricism

Método científico, experimentos y pruebas
Scientific method, experiments and tests, by ThisIsEngineering Raeng on unsplash

The good news is that the mathematical method is not the only way to verify our code, we also have the scientific method. Which cannot prove that things are absolutely correct from a mathematical point of view. What we can do is create experiments and obtain enough results to verify that our theories work. Since our theories work on these experiments, then we conclude that they are “correct” enough for our validation purposes.

If the theory is easily validated as false, then it is time to modify or change it. This is the scientific method and this is how tests are currently done:

First we establish our theory (write the test), then we build the experiments (write production code) and finally we verify (run the test) and repeat this cycle until we have enough evidence.

Doesn't this sound like a current agile practice called TDD?

Tests show the presence, not the absence, of defects

Edsger Wybe Dijkstra said “Testing shows the presence, not the absence, of defects.” That is, a program can be proven wrong by testing, but it cannot be proven correct. All we can do with our tests is validate that our program works well enough for our goals. But we can never be one hundred percent sure of the absence of defects.

If we can never be one hundred percent sure that our code is correct, even with its tests, what makes us think that without tests we deliver a program with sufficient validity to affirm that no negligence is consciously committed?

direct control

lto structured programming teaches us about direct control, that is, controlling the sequential flow of operations through the control structures, without neglecting the recommendation of Wybe Dijkstra about GOTO. This recommendation also applies to statements that drastically change the normal flow of operations, for example a break within a cycle for nested, that break It breaks direct control because it abruptly complicates the understanding of the algorithm. Let's not be purists either, there will surely be cases where you need these sentences, but in the first instance, try to avoid them.

In conclusion, the structured programming paradigm teaches us:

The direct, clear and explicit control of what a piece of code does

Object-oriented programming paradigm

Arised from functions?

The object-oriented programming paradigm was discovered in 1966 by Ole Johan Dahl and Kristen Nygaard when they were developing simula 67. Two years before structured programming and its adoption by the programming community was some time later. In 1967 it was launched Simulates 67, Simulates It was the first object-oriented programming language, it basically added classes and objects to ALGOL, initially Simula was going to be a kind of extension of ALGOL.

During the development of Simula, it was observed that the execution of an ALGOL function requires certain data, which could be moved to a tree structure. This tree structure is a Heap.

The heap allowed you to declare local variables of the function that can exist even after the function returns a value. Doesn't this last sound like what closure is in JavaScript?

The parent function becomes a constructor, the local variables become the properties, and the child (nested) functions become its methods. In fact, this pattern is still widely used by Javascript to create modules and use functional inheritance. This also describes how classes work in Javascript, behind are functions.

Spread of polymorphism

All this helped a lot to implement polymorphism in object-oriented programming languages. Ole Johan Dahl and Kristen Nygaard invented the notation:

object.function(parametro)

The execution of function that belongs to object, but more importantly, we pass a message through parameters from the first part of the code to the second part located in a different object.

Molecular biology and message passing

Paso de mensajes entre células
Passing messages between cells, Image modified from “Signaling molecules and cellular receptors: Figure 1,” by OpenStax College, Biology (CC BY 3.0).

Some time later it was created Smalltalk, a much more sophisticated and modern object-oriented programming language, in charge of this project was Alan Kay. This person is credited with the formal definition of object-oriented programming.

The main influence on Alan Kay's object-oriented programming was biology, he has a degree in biology. Although it is obvious that it was influenced by Simula, the influence of LISP (functional programming language) is not so obvious.

From the beginning he thought of objects as interconnected cells in a network, from which they could communicate through messages.

Alan Kay commented:

I'm sorry I coined the term a long time ago. Objects for programming because it made people focus on the least important part. The big idea is “Sending messages“.

Alan Kay

My English is bad so you can check the original text here.

Better object composition over class inheritance

Smalltalk It also allowed the creation of Self, created at Xerox Parc and later migrated to Sun Microsystems Labs. It is said that Self It is an evolution of smalltalk.

In this programming language the idea of prototypes, eliminating the use of classes to create objects, this language uses the objects themselves to allow one object to reuse the functionalities of another.

Self It is a fast language and is generally known for its great performance, self It did a good job on garbage collection systems and also used a virtual machine to manage its execution and memory.

The virtual machine Java HotSpot It could be created thanks to Self. Lars Bak one of Self's latest contributors, he was in charge of creating the V8 Javascript engine. Due to the influence of Self we have today the engine of JavaScript V8, which uses it node.js, mongoDB and Google Chrome internally.

Self followed one of the book's recommendations Design Patterns: Elements of Reusable Object-Oriented Software, long before it came out, published this recommendation:

Better composition of objects to class inheritance.

Design Patterns: Elements of Reusable Object-Oriented Software

Example

Currently Javascript uses prototypes for code reuse, you could say that it uses composition, instead of inheritance. Let's look at an example:

const person = {
    greet () {
      return 'Hola'
    }
};
// se crea un programador con el prototipo igual al objeto persona
const programmer = object.create(persona);
programmer.programar  = () => 'if true';
const saludo = programmer.greet();
const codigo = programmer.programar();
console.log(saludo); // 'Hola'
console.log(codigo); // 'if true'

The object programmer It is based on the prototype of `person`. It doesn't inherit, it just directly reuses the functionality of `person`.

JavaScript emerged shortly after JAVA, in the same year. JavaScript took influences from Self, and in turn Self was influenced by smalltalk.

The syntax of current classes in Javascript is nothing more than a facade, well a little more accurately they are an evolution of the constructor functions, but internally, their basis are functions and prototypes.

Communication with message passing

As we already saw, the origin of object-oriented programming has its origins in functions, and the main idea has always been communication between objects through message passing. We can say that Object-oriented programming tells us of message passing as a key piece for the communication of objects, for example, when a method of one object invokes the method of another.

object.function(parametro);

In conclusion, the object-oriented programming paradigm teaches us:

Message passing for communication between objects

Functional programming paradigm

lambda calculation

Image taken from https://www.slideshare.net/FASTPresentations/introduction-to-lambda-calculus-using-smalltalk-by-facundo-javier-gelatti

Functional programming is the oldest programming paradigm, in fact its discovery was long before computer programming, it was discovered in 1936 by Alonzo Church, when I invented the lambda calculus, based on the same problem to be solved by your student Alan Turing.

As a curious fact, the symbol of the lambda calculus is:

λ

The first language based on functional programming was LISP, created by John McCarthy. As we saw previously, Alan Kay also took influence from LISP to create Smalltalk, with this we can see that the programming paradigms can be united and their relationship between them arises from the idea of how to solve problems more efficiently, they are not fighting, nor Separated, they seek the same goal and somehow evolve together.

The basis of the lambda calculus is immutability, We will review this concept later.

Similarities with OO and structured paradigms

As we saw in the structured programming paradigm, we can decompose our programs into smaller units called procedures or functions. Since functional programming is the oldest paradigm, we can say that the structured programming paradigm also relies on functional programming.

Now, if we analyze the notation a little object.function(x) that we saw in the object-oriented programming paradigm section, is not very different from function(object, parameters), these two lines below are the same, the fundamental idea is the passing of messages, as Alan Kay tells us.

object.function(parametro);
function(objeto, parametro);

Smalltalk uses the “The Actor Model”, which says that actors communicate with each other through messages.

On the other hand we have LISP, which has a “Function dispatcher model” What we currently call functional language, these models are identical, because what functions and methods do is send messages between actors.

An example of this is when a function calls another function or when an object's method is invoked, what happens is that actors exist and they communicate with each other through messages.

Message passing again

So we can emphasize that the main idea of OOP is the sending of messages and that it is not very different from functional programming, in fact according to what we already established in the previous sections, OOP was born from a functional base. And here it is important to highlight what he said Alan Kay Co-creator of SmallTalk:

I'm sorry I coined the term a long time ago. Objects for programming because it made people focus on the least important part. The big idea is “Sending messages“.

Alan Kay

From the communication models between Smalltalk and LISP messages, it was created scheme.

scheme has the goodness to use tail recursion and closure to obtain a functional language, closure allows access to the variables of an external function even when it has already returned a value. This is the same principle that gave rise to object-oriented programming by Ole Johan Dahl and Kristen Nygaard. Do you remember the closure question in Javascript?

Javascript uses closure a lot in its functional programming paradigm. JavaScript took influences from scheme, at the same time scheme was influenced by LISP.

No side effects

The basis of the lambda calculus is immutability, therefore, lImmutability is also the basis of the functional programming paradigm.

We as functional programmers must follow this principle and limit object mutations as much as possible to avoid side effects.

I repeat, the main idea of functional programming is immutability, which allows you to create your programs with fewer errors by not producing side effects that are difficult to control.

As an example, suppose we have an object person and we want to “change” the name, the most obvious thing would be to modify the name property directly, but what happens if that object is used elsewhere and the name is expected to be “Jaime”, that is why instead of changing the name property , we only create a new person object with a different name, without modifying the original.

functions cambiarNombre(name, person) {
  return {
    name: name,
    edad: person.edad
  }
}
const James = { name: 'Jaime', edad: 30 };
const juan = cambiarNombre('Juan', jaime);
console.log(jaime); // { nombre: 'Jaime', edad: 30 }
console.log(juan); // { nombre: 'Juan', edad: 30 }

Here you will find more details about the fundamental principles of functional programming:

Introduction to functional programming

Finally, the functional programming paradigm teaches us:

No side effects, for clear expression and less prone to errors

Conclusion

It is important to note that if the three programming paradigms were implemented between 1958 with LISP (functional programming) and Simula (object-oriented programming) in 1966, and the discovery of the structured programming paradigm in 1968, in only a period of 10 For years there has been innovation in programming paradigms, and new paradigms have not really emerged, unless they are based on these three main ones.

Right now more than 60 years have passed, which tells us the importance and firmness they have despite the time that has passed.

  • Functional programming paradigm (1958, already implemented in a programming language for computers, remember that it was discovered in 1936)
  • Object Oriented (1966)
  • Structured (1968)

The implementation of these three paradigms from the beginning within JavaScript has made this programming language the global success it is today. And it proves to us the value of combining paradigms when writing our programs.

JavaScript is a multi-paradigm programming language, so you can combine the paradigms to create much more efficient and expressive code using:

  • The direct, clear and explicit control of what a piece of code does
  • Message passing for communication between objects
  • No side effects, for clear expression and less prone to errors

References

https://en.wikipedia.org/wiki/Structured_programming

https://en.wikipedia.org/wiki/Structured_program_theorem

http://wiki.c2.com/?AlanKayOnMessaging

https://www.slideshare.net/FASTPresentations/introduction-to-lambda-calculus-using-smalltalk-by-facundo-javier-gelatti

Clean architecture book

Introducción a programación funcional

Introduction to functional programming

Origin

El origen de la programación funcional data del año 1936, cuando un matemático llamado Alonzo Church necesitaba resolver un problema complejo, del cual no hablaremos aquí, pero Alonzo creó una solución, el lambda calculus. De esta forma nació la programación funcional, incluso mucho antes de la primera computadora digital programable y de los primeros programas escritos en ensamblador.

La programación funcional es mucho más antigua que la programación estructurada y la programación orientada a objetos. Te recomiendo también revisar esta información sobre el paradigma de programación funcional.

Sin efectos colaterales

Todo lo que necesitas saber sobre functional programming es que “No tiene efectos colaterales“, es decir, que sus elementos (funciones) son inmutables.

Lo anterior significa que una función no se mete en lo absoluto con datos que existen fuera de ella, si puede utilizar los datos enviados como parámetros, pero no debe modificarlos, todos los datos deben ser inmutables, ¿Por qué?, pues porque así hacemos las cosas más simples y con menos errores, más adelante tenemos un ejemplo. A este comportamiento se le llama puro.

No side effects nos permite entender todas las demás características de la programación funcional, por mencionar algunas principales:

  • Funciones puras
  • Inmutabilidad
  • Funciones de alto nivel
  • Funciones currificadas
  • Recursividad
  • Menos errores de programación porque no realiza efectos colaterales.

Toda función teniendo ciertos parámetros, cuando se ejecuta, obtendremos un resultado basado en esos parámetros, y si volvemos a utilizar los mismos parametros, entonces la función regresara el mismo valor. Esto es debido a que una función no depende de más datos externos que puedan ser modificados, así tendremos más seguridad y nuestro código se vuelve más entendible.

Javascript es un lenguaje de programación muy potente y multiparadigma, soporta el paradigma funcional y lo utilizaremos para nuestros ejemplos.

Funciones puras e inmutabilidad

Bueno, realmente ya explicamos de manera indirecta que es una función pura en los párrafos anteriores, pero veamos una definición formal. Una función pura es la que cumple con estas dos características:

  1. Siempre obtendremos el mismo resultado dado los mismos parámetros de entrada.
  2. No tiene ningún efecto colateral observable, no modifica el estado de los datos externos, por lo que todos los datos deben ser inmutables.

Un ejemplo de como cambiar el nombre de una objeto persona usando primero una función con efector colaterales:

functions cambiarNombre(name) {
  person.name = name;
}
const James = { name: 'Jaime', edad: 30 };
cambiarNombre('Juan')
console.log(jaime); // { nombre: 'Juan', edad: 30 }

En la anterior función notamos que se cambia objeto James, el cual supongamos que es parte del estado de nuestra aplicación, pero puede haber otras funciones que utilicen este objeto, por lo que se puede generar problemas si alguien más espera que la propiedad name del objeto siga siendo 'jaime'.

Ahora veamos la versión funcional de la función:

functions cambiarNombre(name, person) {
  return {
    name: name,
    edad: person.edad
  }
}
const James = { name: 'Jaime', edad: 30 };
const juan = cambiarNombre('Juan', jaime);
console.log(jaime); // { nombre: 'Jaime', edad: 30 }
console.log(juan); // { nombre: 'Juan', edad: 30 }

En la versión funcional, cambiarNombre no modifica el objeto James, más bien crea un nuevo objeto con la misma edad que James y con la propiedad name equal to 'Juan', con esto evitamos efectos colaterales por si el objeto James es utilizado por otra función u otro programador.

Con esta función sin efecto colateral, nos damos cuenta de que los datos se manejan sin ser modificados, es decir, inmutables, los parámetros person and name nunca fueron cambiados.

Funciones de alto nivel y currificadas

Una función de alto nivel es una función que implementa al menos una de las opciones siguientes:

  • Recibir como parámetro una o más funciones
  • Regresar como resultado una función

Un ejemplo muy común usado en nuestro navegador web es agregar escuchadores de eventos:

<button id="boton">Soy un botón</button>
const boton = document.querySelector('#boton');
boton.addEventListener('click', functions () {
  alert('Click sobre el boton');
});

En el código pasamos como segundo parámetro del método addEventListener una función anónima (sin nombre) que mostrará un alerta al dar click sobre un botón con id igual a ‘botón’. Dado que pasamos por parámetro una función, entonces se dice que es una función de alto nivel.

Otro ejemplo de función de alto nivel lo podemos observar en los métodos de arreglos en Javascript, el código de abajo toma un arreglo de números y crea otro arreglo con los valores aumentados al doble.

See the Pen Funciones de alto nivel by Jaime Cervantes Velasco (@jaime_cervantes_ve) on CodePen.

The function map retorna un nuevo arreglo, no cambia el arreglo original, por lo que decimos que no existe un efecto colateral.

Las funciones currificadas son funciones de alto nivel que como resultado regresan otra función, de tal manera que el acto de currificar es convertir una función de más de un parámetro en dos o más funciones que reciben parcialmente esos parámetros en dos o más invocaciones currificadas.

See the Pen Funciones de alto nivel y funciones currificadas by Jaime Cervantes Velasco (@jaime_cervantes_ve) on CodePen.

Las funciones flecha o arrow functions nos permiten acceder al contexto de los parámetros, es por eso que seguimos teniendo acceso al parámetro to de la primera invocación de summaryCurry. De esta manera cuando se les define un valor, una arrow function puede ver ese valor. Para lograr lo mismo sin funciones flecha se debe utilizar la variable arguments que existe como variable local dentro de todas las funciones en JavaScript. Para mantener las cosas simples, de momento no veremos como hacerlo con arguments.

Función recursiva

Para crear una función recursiva, primero se define un caso base, luego a través de la división del problema en pedazos más pequeños se encuentra un patrón, este patrón llamado caso recursivo se repite muchas veces, es aquí donde la función se llama así misma y acumula los resultados, la ejecución se detiene hasta llegar a su caso base.

  1. El caso base, el cual permite detener la ejecución de subsecuentes invocaciones de la función recursiva.
  2. El caso recursivo, el cual permite que una función se llame a sí misma hasta llegar al caso base.

El factorial de un número positivo es la multiplicación de ese número por el número inmediato menor y así sucesivamente hasta llegar al número 1, su notación es n!, donde n es un número positivo. Por ejemplo el factorial de 5 is 120, 5! = 5 x 4 x 3 x 2 x 1 = 120.

// caso base:
1! = 1 = 1
// caso recursivo, ejemplos:
2! = 2 x 1 = 2 x 1!
3! = 3 x 2 x 1 = 3 x 2!
4! = 4 x 3 x 2 x 1 = 4 x 3!
5! = 5 x 4 x 3 x 2 x 1 = 5 x 4!

Con estos datos, podemos crear nuestra formula factorial(n) = n * factorial(n-1), lo cual seria nuestro caso recursivo, pero debemos de añadir nuestro caso base para que se detenga, cuando n=1 debemos obtener como resultado 1.

Veamos como quedaría nuestra función recursiva en javascript:

See the Pen Funciones recursivas by Jaime Cervantes Velasco (@jaime_cervantes_ve) on CodePen.

Con esto cubrimos las cualidades principales de la programación funcional, pero recuerda, lo más importante es que NO existen efectos colaterales.

Compartir en redes sociales desde tu página web en Android

Compartir en redes sociales desde tu página web en Android

En la versión de Google Chrome 61 para Android se agregó esta interesante funcionalidad que te permite compartir información en redes sociales utilizando las aplicaciones nativas de tu smartphone.

¿Cómo se usa?

Para poder utilzar esta Web share API, necesitas:

  • Chrome 61 o una versión mayor en Android
  • Que la aplicación o sitio web funcione sobre el protocolo seguro HTTPS

Aqui esta un ejemplo, pruebalo en tu android con Chrome 61 o una versión mayor, de lo contrario no funcionara. Esta funcionalidad no la tiene tu navegador de escritorio.

Al presionar el boton grande “Compartir” sale este cuadro de dialogo nativo de android:

¿Qué debes tomar en cuenta?

Esta funcionalidad solo se puede ejecutar con la accion del usuario, es decir, solo se puede invocar en controladores de eventos como click.

Solo se puede ejectar en Android y en el navegador web Chrome >= 61

En el ejemplo anterior, primero nos aseguramos que el navegador soporta la funcionalidad con navigator.share.

Patrones de diseño en Javascript, Singleton y Factory

Patrones de diseño en Javascript, Singleton y Factory

¿Qué es un patrón de diseño?

Cada patrón describe un problema que ocurre una y otra vez en nuestro entorno, y luego describe el núcleo de la solución a ese problema, de tal manera que puedes utilizar esta solución millones de veces, sin nunca hacerlo de la misma forma dos veces.

  • Arquitecto Christopher Alexander

La definición del patrón de diseño no viene del desarrollo de software, sino de la arquitectura del habitat humano.

Tanto la arquitectura del hábitat humano como el desarrollo de software tienen muchas similitudes, esto es porque como seres humanos somos parte del mundo y de la naturaleza. Por lo tanto el desarrollo de software busca siempre representar el mundo real,  de hecho la programación de cualquier aplicación siempre se usa para solucionar problemas reales de nuestro entorno.

Entonces podemos comprender que un patrón de diseño permite ofrecer una solución a problemas comunes en el diseño de software, describe la solución a problemas que se repiten muchas veces y que son muy similares entre ellos, en concreto, esta similitud permite diseñar una solución para un conjunto de problemas parecidos.

Los patrones de diseño actuales fueron popularizados por el libro Design patterns: elements of reusable object-oriented softwarede los autores conocidos como GoF(Gang of Four):

  • Erich Gamma
  • Richard Helm
  • Ralph Johnson
  • John Vlissides

En este libro se describen 23 patrones de diseño que desde 1995 hasta nuestros días siguen en uso con un gran impacto en el desarrollo de software. Esto no quiere decir que estos patrones no fueron utilizados mucho antes de la publicación del libro.

Este artículo será el primero de una serie, que nos permitirá entender como se pueden implementar muchos de estos patrones de diseño en el lenguaje de programación Javascript y no solo los descritos por GoF, también se explicara otros patrones de diseño útiles en Javascript.

El primer patrón de diseño es el Patron Singleton.

Patrón Singleton

Este patrón nos permite tener una solo instancia de un tipo de objeto, porque no es necesario crear varias instancias nuevas cuando una solo instancia puede encargarse del mismo trabajo en toda la aplicación. Al solo tener una instancia, centralizamos la información, funcionalidad y mejoramos el rendimiento disminuyendo el uso de memoria.

En Javascript es muy fácil utilizar este patrón, tan fácil como crear un objeto literal, por ejemplo supongamos que tenemos una configuración para el número de caracteres y palabras que se muestran en un sitio web optimizado para buscadores:

let configSEO = {
    name: 'Pensemosweb',
    seo: {
      descripcion: {
        limiteCaracteres: 155,
        limitePalabras: 23
      },
      titulo: {
        limiteCaracteres: 70,
        limitePalabras: 9
      }
    }
};

Un simple objeto de configuración es un singleton, pues en toda la app se va a hacer referencia al objeto configSEO y nunca se va a crear más nuevos objetos porque se puede extender esa configuración añadiendo más propiedades.

Ahora supongamos que necesitamos utilizar objeto donde existan funciones de configuración y métodos, además de una interfaz para obtener la instancia, tomando el mismo ejemplo de configSEO ahora vamos a utilizar funciones anidadas y closure (o cierres), esto ultimo permite a una función tener acceso a las funciones y variables definidas en el ámbito en que esta función también es definida.

La función anónima principal se invoca inmediatamente con la notacion (function() {}()) y recibe un parámetro el, el cual guarda la referencia al elemento del DOM con id resultado. Este parámetro se lo pasamos a la función inmediata a través de la variable global elem.

Debido a que definimos instancia dentro de la función principal, las funciones anidadas definidas más adelante tienen acceso a esa variable instancia que guardara nuestro singleton cuando invoquemos la función configSEO().

Además metodoPublico()and privada() tienen acceso a las variables instancia and el.

Si nos fijamos en la línea 48, elem.append(conf1 === conf2), comparamos igualdad de referencia, conf1and conf2son el mismo objeto, como singleton, solo trabajamos con una instancia.

También podemos hacer uso de otro patrón de diseño llamado factory, el cual veremos más a detalle en otro post, por el momento solo ten en cuenta que tendremos una función que fabricara singletons.

Podemos notar que con una sola función, podemos acceder a los singletons creados anteriormente y podemos agregar más si queremos. Este tipo de patrón factory de singletons es muy utilizado en frameworks como AngularJS. Aquí abajo un ejemplo del singleton configSEO y el factor y usando AngularJS.

en_USEN